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Abstract. This work is concerned with an extension of the so-called Levi-Civita and 
Kustaanheimo-Stiefel transformations. The extension is achieved along two lines. Firstly, 
we examine the latter transformations in other dimensions than the ones originally con- 
sidered by, on the one hand, Levi-Civita and, on the other hand, by Kustaanheimo and 
Stiefel. Secondly, Re pass from the compact to the non-compact case. This leads to 
quadratic non-bijective transformations that we refer to as Hurwitz (or Kustaanheimo- 
Stiefel-like) and quasiHurwitz (or Levi-Civita-like) transformations. The Hurwitz and 
quasiHurwitz transformations are introduced and studied in an algebraic framework which 
relies on the use of (eight-dimensional) Cayley-Dickson algebras. An explicit formulation 
of the Hurwitz and quasiHurwitz transformations is also given in terms of Clifford algebras. 
The Hurwitz transformations are investigated from a geometrical viewpoint. Indeed, they 
are connected to Hopf and 'pseudoHopf librations. Finally, some differential aspects of 
the Hurwitz and (to a lesser extent) quasiHurwitz transformations are developed in view 
of future physical applications. 

1. Introduction 

Quadratic non-bijective transformations turn out to be of paramount importance in 
mathematical and theoretical physics and in quantum chemistry. As a first example, 
everyone is familiar with the (two-dimensional) conformal transformation (an R2 + R2 
surjection with discrete kernel), also referred to as the Levi-Civita ( LC) transformation. 
By way of illustration, this well known transformation has been used for the restricted 
three-body problem [ 11 and for problems relative to R2 and R3 hydrogen atoms [2-51. 
To be more precise, the LC transformation makes it possible to convert, in Schrodinger 
equation [2,5] and in Feynman path integral [4] formulations, the problem of an R2 
hydrogen atom into the one of an R2 isotropic harmonic oscillator subjected to a 
constraint; in addition, the LC transformation has been used in a classical approach 
to the quadratic Zeeman Hamiltonian for the R3 hydrogen atom [3]. 

As a second example, we mention a transformation which is often referred to as 
the Kustaanheimo-Stiefel ( KS) transformation (an R4+ R3 surjection with continuous 
kernel) and which naturally arises in the theory of spinors (see for instance [ 6 ] ) .  Such 
a transformation has been the object in recent years of considerable interest in celestial 
mechanics, theoretical physics and theoretical chemistry. It has been used by Kustaan- 
heimo and Stiefel[6,7] for regularisation at the origin of the three-dimensional Kepler 
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problem. This transformation has also been considered independently by Ikeda and 
Miyachit [8] in the framework of a unified treatment of the R4 isotropic harmonic 
oscillator, the R3 hydrogen atom and the R3 spherical rotator. Further works on the 
connection between the R' hydrogen atom with Coulomb potential only and the R4 
isotropic harmonic oscillator (or, equivalently, a coupled pair of [w' isotropic harmonic 
oscillators) have been conducted using the KS transformation in a (Schrodinger) partial 
differential equation approach [9-171, a (Feynman) path integral approach [ 18-23] 
and a (Weyl-Wigner-Moyal) phase space approach [24]. It has also been shown that 
the problem of an IW' hydrogenlike atom in an electric or a strong magnetic field can 
be converted, by means of the K S  transformation, into the problem of an [w4 isotropic 
anharmonic oscillator presenting anharmonicity of degree 4 and 6 respectively and 
subjected to a constraint [25]. The KS transformation has also been used to tackle the 
problem of an R' hydrogen atom in the presence of a time-dependent electric field 
[26]. Furthermore, the interest of the KS transformation has been pointed out for 
potentials of relevance in various problems from quarks to atoms and molecules as, 
for example, the Hartmann potential (of relevance for ring-shaped molecules) and the 
Kratzer potential (of relevance for vibration-rotation spectroscopy of molecules) [ 271. 
To close this (probably not exhaustive) review, we mention that the KS transformation 
has been used in connection with a quantum theory of infinite component fields [ 101, 
with a complete geometrical description of the magnetic monopole of Wu and Yang 
[28], with a characterisation of a new class of instantons [29] and with a study of 
supersymmetries for particles in a Coulomb potential [30]. 

The KS transformation, which is not an extension of the LC transformation (as 
noted in [27]), and the LC transformation both have counterparts in n = 2, 4 and 8 
dimensions. Many of these transformations are closely related to the classical Hopf 
bundles [31-331. (As is well known, the KS transformation corresponds to the S 3 / S '  = 
S' Hopf fibration.) In this respect, Polubarinov has studied quadratic transformations 
corresponding primarily to the Hopf fibrations on spheres [32]. His study is developed 
in terms of spinors and hypercomplex numbers with the aim of obtaining Fierz identities 
for transforming classical or quantum Lagrangians and Hamiltonians. Quite recently, 
a tentative classification of quadratic transformations not necessarily related to Hopf 
maps has been proposed [33]. 

It is one of the aims of this paper to investigate, in a general algebraic framework, 
usual (i.e. compact) as well as generalised (i.e. compact and non-compact) quadratic 
transformations. This framework relies on the use of real Cayley-Dickson algebras 
[34, 351 in eight dimensions. The latter algebras turn out to be particularly relevant 
for physical applications (see [35]). They cover the classical and hyperbolic octonions 
which have been used by Moffat [36] for describing a non-symmetric theory of 
gravitation in four dimensions. The four-dimensional subalgebras of the eight- 
dimensional Cayley-Dickson algebras are the algebras consisting either of classical 
quaternions or of hyperbolic quaternions. Classical and hyperbolic quaternions have 
been used by Jantzen [37] to study spacetime symmetries in cosmological problems. 
The two-dimensional subalgebras of the four-dimensional Cayley-Dickson algebras 
include the algebra of complex numbers and the one of hyperbolic complex numbers. 
The hyperbolic complex numbers have been used to describe pseudoconformal transfor- 
mations in two-dimensional hydrodynamics [38]. All the aforementioned algebras in 

t These authors employ a parametrisation of R4 from which the Kustaanheimo-Stiefel transformation arises 
quite naturally. 



Non-bijective quadratic transformations 3 09 

n = 2,  4 and 8 dimensions are composition algebras and either division algebras or 
singular (following the terminology of Ilamed and  Salingaros [ 391) division algebras. 
A general study and construction of the Cayley-Dickson algebras in any dimension 
is given in the papers by Wene [35] who exhibits a close connection between the latter 
algebras and  the Clifford algebras. 

2 from the eight-dimensional Cayley-Dickson algebras and define 
anti-involutions of these algebras and of their subalgebras. This leads to a decomposi- 
tion of the Cayley-Dickson algebras of dimensions n = 2, 4 and 8 in the form H O  M ,  
where H is a Lie-admissible subspace and  M an  (ordinary) subspace (which may not 
span a subalgebra). These anti-involutions allow us to define in Q 3 what we call 
Hurwitz transformations. These transformations correspond to maps from the con- 
sidered Cayley-Dickson algebras onto their subspaces M. A first property of the 
Hurwitz transformations concerns a quadratic relation which generalises a relation 
occurring in the celebrated Hurwitz factorisation problem [40] on the sum of n = 2, 4 
or 8 squared numbers. A second property deals with their invariance under the Lie 
group G constructed from the set of generators of H and even with their invariance 
under G/Z2.  Then, we identify the various Hurwitz transformations to quadratic 
non-bijective transformations with kernel G/Z,. An explicit formulation of the Hurwitz 
transformations in terms of Clifford algebras is also given in 5 3. 

In the four-dimensional compact case, the so-called Hurwitz transformations are 
nothing but alternative presentations of the KS transformation. In contradistinction, 
in the two-dimensional compact case, it is not possible to recover the LC transformation 
in the framework of the Hurwitz transformations. In this sense, the KS transformation 
is not an  extension of the LC transformation as noted above. In 9 4 we introduce what 
we call quasiHurwitz transformations. These transformations constitute compact and  
non-compact generalisations in n = 2 ,  4 and 8 dimensions of the LC transformation. 
(The quasiHurwitz transformations may be defined equally well in arbitrary 2 m  
dimensions.) They are built as quadratic transformations on two-, four- and eight- 
dimensional Cayley-Dickson algebras ( a  fact which justifies the name quasiHurwitz) 
with a discrete kernel Z,. ( A  particular example of these quasiHurwitz transformations 
has been already worked out by Kibler and  Nkgadi in the four-dimensional compact 
case [27] . )  A Clifford formulation of the quasiHurwitz transformations is also given 
in 4. 

A second goal of this work is to investigate the Hurwitz transformations in a 
geometric framework. This is achieved in 9 5 where the invariance under the group 
G/Zz of the Hurwitz transformations leads to fibre bundles. More precisely, we are 
led (i) to classical Hopf bundles (i.e. with fibrations on spheres) when choosing the 
algebras of complex numbers, quaternions and octonions (a result that is known) and  
( i i )  to pseudoHopf bundles (i.e. with fibrations on hyperboloids) when choosing the 
algebras of hyperbolic complex numbers, hyperbolic quaternions and  hyperbolic 
octonions ( a  result which is apparently new). The pseudoHopf bundles admit compact 
and non-compact fibres and have as base spaces either single-sheeted hyperboloids or 
two-sheeted hyperboloids. 

The Hurwitz transformations (which involve the KS transformation) and  the quasi- 
Hurwitz transformations (which involve the LC transformation) can be used to relate 
(elliptic or hyperbolic) differential operators in different dimensions. This point is 
examined in § 6 where we relate several hyperbolic differential operators in three and  
four dimensions as well as in five and eight dimensions. This gives the key for switching 
to physical applications. In particular, we deal in § 7 with applications to non-compact 

We start in 
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sigma models on curved spaces (cf [41] for non-linear sigma models on spheres). 
Generally speaking, each application is concerned with a dimensional reduction process 
(cfthe dimensional reduction of Hamiltonian systems in [42]). This may be transcribed, 
for quantum mechanical systems, in terms of invariance and non-invariance algebras 
as shown in 9 7. A typical example is provided with the R3 (R') hydrogen atom whose 
non-invariance algebra so(4,2) (s0(6,2)) may be obtained from a dimensional reduc- 
tion approach to the R4 (R8) isotropic harmonic oscillator. 

This article contains two appendices. In appendix 1, we give an explicit realisation 
of the Clifford matrices r k  of orders 8, 4 and 2 occurring in 9 3 and briefly discuss the 
Dirac groups associated to the Clifford algebras of degree 2m - 1. In appendix 2, we 
construct the 'inverses' of the Hurwitz transformations in n = 2, 4 and 8 dimensions. 

2. Eight-dimensional Cayley-Dickson algebras 

2.1. Description of the algebras and of their subalgebras 

The eight-dimensional Cayley-Dickson algebras are generated by a set of seven 
generators e , ,  e , ,  . . . e, which obey the multiplication law defined in table 1, where 
each c, ( i  = 1 , 2 , 3 )  stands for 1 or -1. In  other words, we have the rule 

7 

eke1 = - g k f  + akfmem ( k  and l = 1 , 2 ,  . . . ,  7 )  (1) 
m = l  

where the gkf are the matrix elements of 

g=diag(-cl ,-c2,  c1c2,-c3, c l c 3 ,  c2c3,-c1cZc3) (2a)  
and the constants aklm = -afk"' directly follow from table 1, Let us remark that the 
tensor defined by 

is totally antisymmetric. We shall denote by A( c , ,  c 2 ,  c3) the eight-dimensional Cayley- 
Dickson algebra on R responding to the (standard) multiplication law described by 
table 1. The unit element e,, of A(c, ,  c,, c3) is simply denoted 1 as is implicit in (1). 
A general element U in A(c,  , c2,  c3) is 

7 

U = U"+ c Ukek U, E R ( a  =o, 1,. . . , 7 ) *  ( 3 )  
& = I  

Table 1. Table of the products ekel for the Cayley-Dickson algebra A(c,,  c 2 ,  c3). For 
instance e2e3 = -e3ez  = -c2e l .  

el e2 e3 e4 e5 e6 e, 
e1 CI e3 CI e2 e5 cl e4 -e, -'le6 

e2 - e3 c2 -c2el eb e7 c2 e4 c2 e5 

e4 - e, - e6 -e7 C? - c 3 e l  - c3 e2 - c3 e3 

e5 -cl e4 - e7 
e6 e7 -czel 

e3 - c1 e2 c2e1 -c1c> e7 '1 eb - c2 e, -cIc2e4 

-'le6 -c1c3 c3 e3 c I c 3 e 2  

c2 e! c3e2 - c3 e3 -czc3 -c2c3el  

e ,  cl eb -c2e5 cIc2e4 c3 e3 -cl  c3ez c2c3el c l c 2 c 3  
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The conjugate U* of U is defined by 

U * =  uo-  C uheh 
k = l  

and the norm N ( u )  of U by 

N ( u ) ?  = MU* = U*U 

(4) 

= U: - C l  u f  - c,u; + c, c2u; - c,u:+ c, c,u: + c2c3u; - c, c2c,u;. ( 5 )  

Equation (5)  may be rewritten as 

where the T , ~  define the metric 

of an  eight-dimensional Euclidean or pseudoEuclidean space. 
We now analyse all the eight-dimensional algebras described by (1)-(7). Each 

triplet ( c , ,  c2, cj) with c , ,  c2 and c3 = 1 or  -1 gives rise to a metric 7 and EO a system 
of seven hypercomplex numbers. The corresponding algebra A(  c, , c2, cj)  is normed 
or pseudonormed according to whether the metric 77 is Euclidean or  pseudoEuclidean. 
The algebras A(c , ,  c2,  c,) are not associative. Nevertheless, they are alternative, i.e. 
the associator 

[U, U, w ] = ( u u ) w - u ( u w )  (8) 

of three elements U, U and )c’ in any A(  c , ,  c2,  c3) is totally antisymmetric. Furthermore, 
they are composition algebras, i.e. 

N(uvj’= N(u)”(vj’ (9) 

for each U and U in any A(c , ,  c2,  c,). The latter point, to be fully discussed in § 3, 
reflects the Hurwitz theorem [40] and some properties specific to Cayley-Dickson 
algebras of dimensions n 8 [34]. The parametrised eight-dimensional algebra 
A(c,  , c?, c3) generates real algebras of dimensions n = 2 ,  4 and 8 and  we close this 
subsection by separately considering the cases n = 8 and n = 4 and 2 ,  which cases may 
be associated to the various friplefs ( cI , c?,  c3) and to the various generalised triplets 
( c , ,  c2,  0) and  ( cI  , 0, 0), respectively 

C a s e n = 2 .  It corresponds to A(c , )=A(c , ,O ,O) .  For c l = - 1 ,  w e f i n d A ( - l ) = @ ,  the 
normed algebra of usual complex numbers. For c, = 1, we find A(  1) = R,  the algebra 
of hyperbolic complex numbers [39]. This algebra admits zero-divisors since there 
exist elements U in R such that U # 0 and N (  U )  = 0. In fact, 

N (  U)’= U;- U: (10) 

and we can isolate in R the cone of all zero-divisors. Following Ilamed and Salingaros 
[39] we call the pseudonormed algebra R a singular division algebra, i.e. a n  almost- 
everywhere division algebra. 



312 D Lambert and M Kibler 

Case n = 4. I t  corresponds to A( c 1 ,  c?) = A (  c i ,  c2, 0). For c1 = c2 = -1, we find 
A(-1, -1) = W, the normed algebra of (Hamilton) usual quaternions. For (c,, c2)  # 
(-1, -1) with c1 and c 2 = * 1 ,  we are led to A(1, l), A ( l ,  -1) and A ( - 1 , l )  which are 
all isomorphic to the algebra of hyperbolic quaternions (or Godel quaternionic algebra 
or split quaternionic algebra, cf [37]). Referring to a general classification by Salingaros 
[39] we call N, the latter pseudonormed algebra. The hyperbolic quaternionic algebra 
N, is a singular division algebra. For instance, if u belongs to A(-1, l ) ,  then 

N ( u ) ' =  U:+ u : -  uf  - uf (11) 

and we obtain again a cone of zero-divisors. 

Case n = 8. It corresponds to A(c,,  c2,  cj). For cI = c 2 =  c j = - l ,  we find 
A(  -1,  -1,  - 1) = 0, the normed algebra of (Cayley) usual octonions. For ( c , ,  c 2 ,  c3) # 
( -  1, - 1, - 1) with c,, c2 and c3 = 5 1, we obtain seven algebras isomorphic to the algebra, 
that we denote as O', of (Dickson) hyperbolic octonions. These seven pseudonormed 
algebras are related to eight-dimensional pseudoEuclidean spaces with metrics of the 
signature 0. For example, if U belongs to A(-1, -1, l ) ,  then 

Equation (12)  shows that the hyperbolic octonionic algebra 0' is a singular division 
algebra with a cone of zero-divisors. 

We give a summary of the main properties for the Cayley-Dickson algebras in 
dimensions n =2,  4 and 8 in table 2. 

2.2. Anti-involutions of the algebras and of their subalgebras 

For the purpose of defining anti-involutions of A ( c ,  , c2 ,  c 3 ) ,  let us first emphasise those 
points which are relevant for the construction of a 2n-dimensional Cayley-Dickson 
algebra from a n-dimensional Cayley-Dickson algebra (cf also [35]) . We start from 
a (real) Cayley-Dickson algebra A(c) of dimension n with n - 1 generators 
e , ,  e? ,  . . . , e n - l .  The argument c identifies to c 1 ,  c 2 ,  cj for n = 8, to c,, c2 for n =4 and 
to c, for n = 2. For n arbitrary, c is a p-uple c1, c2, . . . , cp where each c, ( i  = 1,2, .  . . , p )  
stands for 1 or  -1 and p is such that 2' = n. Then, we can construct a new Cayley- 
Dickson algebra A(c, c'), where c ' =  * l ,  of dimension 2n and called the double algebra 
of A(c). The algebra A(c, c') is the set of all pairs (U, v), where U and v belong to 
A ( c ) ,  endowed with the multiplication rule 

(U, u)(w,x)=(uw+c'x*v,  vw"+xu). (13) 

(Conjugates of the type x* for x in A(c) are defined by a relation mimicking (4) in 
an obvious way.) Finally, with the following identifications: 

A(c)={(u,O); u ~ A ( c ) }  

1 = ( 1 , O )  e ,  ( e , ,  01, . . . 

it is possible to write 

A(c, c ' )=A(c)OA(c)e,  with e,?,=c'. (15) 
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The crux of our algebraic approach amounts to constructing anti-involutions of 
the various Cayley-Dickson algebras A(  c , ,  c 2 ,  c 3 ) ,  A (  c , ,  c 2 )  and A(  c , ) .  We now define 
what we mean by an anti-involution of an arbitrary algebra A. 

Dejnirion 1. An anti-involution j of an algebra A is an involutory anti-automorphism 
of A, i.e. a mapping j of A into A such that j (  j (  a ) )  = a and j (  ab)  = j (  b ) j (  a )  for each 
a and each b in A. 

Returning to the decomposition afforded by (15), we remark that the usual conjugation 
of A ( c )  can be used to generate two anti-involutions of A(c ,  c ’ ) .  The first one, which 
we call j , ,  corresponds to the usual conjugation of A(  c, c ‘ )  which may be described by 

(16) j o ( ( u ,  U)) = (U, U)* = (U*, -U). 

j ( ( %  U)) = (U*, 0 ) .  

j ( ( u ,  u)(w,x) )= (w*u*+c ’u*x ,  uw*+xu)  (18) 

The second one, which we call j ,  is defined by 

(17) 

As an  example of how to manipulate these two anti-involutions, we can easily verify that 

are equal. 
In order to obtain other anti-involutions of a Cayley-Dickson algebra, we give a 

‘decomposition’ process which may be thought of as the reverse of the ‘composition’ 
process described by (15). Starting with a 2m-dimensional Cayley-Dickson algebra 
A ( c ) ,  we can find 2m - 1 m-dimensional Cayley-Dickson subalgebras 
A , ,  A ? ,  . . . , A 2 m - 1  of A (  c )  such that 

(20) 

where e4 is such that ueq does not belong to Ak for each U in Ak. Equation (20) 
parallels (15) and, in fact, identifies with (15) for A(  c )  = A(c ,  c ’ ) ,  Ak = A(  c ) ,  e4 = e,, 
and m E n. Then, due to (16) and (20), it is possible to find 2m anti-involutions 
j,, j , ,  . . . , j 2 , , - ,  of A ( c ) ,  j ,  being the usual conjugation of A ( c )  and the j ,  for k = 
1 , 2 , .  . . , 2 m  - 1 being the anti-involutions defined by (cf (17)) 

A(  c )  = Ak 0 Akeq ( k =  1 , 2 , .  . . , 2 m  - 1) 

j k ( ( %  0 ) )  =(U*, U )  

j , ( ( u ,  0 ) )  = j d ( U ,  = (U, - U )  for m = l  

k =  1 , 2 , .  . . , 2 m - 1  for m # l  
(21) 

where U belongs to the subalgebra AL of A ( c ) .  Let us mention that the anti-involution 
(of the quaternionic algebra W) considered in [43] constitutes a special case of the 
anti-involutions j ,  ( k  = 1,2,. . . , 2 m  - 1) defined in this work. 

Each anti-involution j ,  (for a = 0 , 1 , .  . . , 2 m  - 1) of A ( c )  allows us to decompose 
the 2m-dimensional vector space A ( c )  as 

A ( c )  = He@ Mu (22) 

ju(He) = -Ha and j , ( M U )  = M,. (23) 

where the two vector subspaces M ,  and Ha are such that 
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It is to be pointed out that Mk with k = 1,2, . . . , 2 m  - 1 and H, with cy = 0, 1,. . . , 2 m  - 1 
are not subalgebras of A( c).  However, the vector space 1 0  Hk for k = 1,2, . . . , 2 m  - 1 
gives rise to the m-dimensional Cayley-Dickson algebra Ak when m # 1 and to the 
two-dimensional Cayley-Dickson algebra A( c)  = (2 or  il when m = 1. Note that the 
2m-dimensional space 1 0  Ho gives rise to A( c). In the particular cases 2 m  = 2, 4 and 
8, we can generate an  associative algebra from a basis of the vector space Hk for 
k = 1,2, . . . , 2 m  - 1. Then, in these cases, it is possible to endow Hk with a Lie algebra 
structure. It is enough to take [x, y ]  = xy - y x  as Lie law, for if x and y belong to Hk, 
then [x, y ]  also belongs to H k .  This Lie-admissible character of the space k f k  will be 
used in 9 3. 

We now apply this to the Cayley-Dickson algebras A ( c )  of dimensions 2m = 2, 4 
and 8. At this point, it is worth recalling that if {ek; k = 1,2,. . . , 7) is a system of 
generators of the eight-dimensional Cayley-Dickson algebra A( c , ,  c2 ,  c3 )  then all the 
sets of generators of its quaternionic subalgebras can be deduced from the first Cayley 
triangle ( e , ,  e,, e3)  by rotations of angle 2 n / 7  of the heptagon ( e , ,  e , ,  e4, e , ,  e 6 ,  e,, e,). 
More precisely, we denote Hk ( k  = 1,2, . . . , 7 )  the vector space deduced from ( e , ,  e , ,  e 3 )  
by a rotation of angle ( k  - 1 ) 2 n / 7  performed on ( e , ,  e 3 ,  e4, e 5 ,  e 6 ,  e , ,  e,). Similarly, 
in the four-dimensional case, we denote Hk ( k  = 1,2,3) the vector space deduced from 
the point ( e , )  by a rotation of angle ( k  - 1 ) 2 ~ / 3  performed on the triangle ( e , ,  e,, e 3 ) .  
Finally, in the two-dimensional case, the single HI corresponds to the single point 
( e , ) .  We are now in a position to examine in turn the cases 2 m  =2, 4 and 8. 

Case 2m = 2. In the two-dimensional case, we have either A ( c )  = C or A( c)  = R. For 
A ( c )  = @, the space H ,  is spanned by e ,  with e: = -1. For A ( c )  =a, the space HI is 
spanned by e ,  with e: = 1. 

Table 3. Generators of the possible subspaces Hk for the various Cayley-Dickson algebras 
A ( c , ,  ~ 2 ,  ~ 3 ) .  

HA 

Table4. The possible algebras 10 H, for the various Cayley-Dickson algebras A( c, , c 2 ,  CJ. 

Possible algebra 
Dimension 2m Algebra 10HA 
of A ( c , ,  c2, c3) A ( c , ,  ( ‘ 2 %  ~ 3 )  ( A ( c ,  , ~ 2 ,  ~ 3 )  = HA 0 MA 1 

2 

4 

c c 
R R 

w c 
N C or fl 

8 0 w 
0’ W or N, 



316 D Lambert and M Kibler 

Case 2m = 4. In the four-dimensional case, we have either A ( c )  = W or A ( c )  = N,. 
First, W admits three (complex numbers) subalgebras C so that Hk is spanned by real 
multiples of ek with e:=-1  ( k =  1, 2 or 3). Secondly, N, contains one (complex 
numbers) subalgebra C and two hyperbolic (complex numbers) subalgebras a. Then, 
H k  ( k  = 1 , 2 , 3 )  is spanned either by one of the two ek such that e: = 1 or by the 
remaining ek such that e: = -1. 

Case 2m = 8. In the eight-dimensional case, we have either the usual octonionic algebra 
A( c) = 0 or the hyperbolic octonionic algebra A( c )  = 0‘. First, 0 comprises seven usual 
quaternionic subalgebras W. Consequently, Hk ( k  = 1 ,2 ,  . . . , 7 )  is spanned by the set 
of all the linear combinations of e,, , epz and ep, such that {epl,  epz, e,,} is a system of 
generators for W. Secondly, 0‘ admits only one subalgebra of type W and six subalgebras 
isomorphic with the hyperbolic quaternionic algebra N, . Then, Hk ( k  = 1 ,2 ,  . . . , 7 )  is 
spanned by the set of all the linear combinations of epl , ep2 and ep3 such that {ep, , e,,, e,,} 
is a system of generators for either W or N, . 

We summarise the results of this subsection in tables 3 and 4. 

3. Humitz transformations 

3.1. Definition and properties 

In 9 3, we restrict our attention to Cayley-Dickson algebras A( c)  of dimension 2m = 2, 
4 and 8. According to 9 2, for fixed 2m we have A(c) = HkO Mk, where Hk = - j k ( H k )  
and Mk = j k ( M k ) ,  j k  being one of the 2m - 1 anti-involutions of A ( c )  with k = 
1 , 2 , .  . . , 2 m  - 1 for 2m = 2 , 4  or 8. We now introduce what we call a Hurwitz transfor- 
mation through the following definition. 

Definition 2. The maps 

X;, ’ : A( c )  --* A( c ) : u - j k  ( u ) u 

and 

XC’: A(c) --* A(c) : U- uj,( U )  

are called, respectively, left and right Hurwitz transformations of A( c). 
We shall use the notations 

and 

XL = Xr:”( U )  = j k (  u ) u  (27) 

Y{( k I ( U )  and xR = XF’( U )  satisfy properties 1-5 below. When the proof is detailed, 
for some fixed value of k ( k  = 1 , 2 , .  . . , 2 m  - 1 ) .  The Hurwitz transformations xL = 

this is done only for the right Hurwitz transformations since the proof for the left 
Hurwitz transformations follows the same pattern. 
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Property 1 .  The right and left Hurwitz transformations XF’ and Xr’ are connected via 

X F i ( j k ( U ) )  = Xt:”(U) (28) 

and 

X J E l k ) ( j k ( U ) )  = Ytik’(u) (29) 

for each element U in the Cayley-Dickson algebra A ( c ) .  

Property 2. The right and left Hurwitz transformations are transformations of magnitude 
2, i.e. 

N ( x R ) ’ =  N ( U ) 4  (30) 

and 

N ( X J  = N ( U ) 4  

Proof: Let us start from 

N (  XR)* = X R X  = ( ujk ( ) ( ujk ( )) * = ( ujk ( ) ) ( ( j k  ( )) * * * (32) 

We can easily verify that ( j k ( u ) ) *  = j , ( u * ) .  Therefore, if the algebra A ( c )  is associative 
(i.e. when A( c)  = @, R, W or N,), we can write 

N(x , )2=  u j , ( u ) j , ( u * ) u * =  U j , ( U * U ) U *  = (uu* ) ’=  N ( U ) 4 .  (33) 

If A ( c )  is not associative but alternative (i.e. when A ( c )  = 0 or O’), it is still possible 
to associate j k ( u )  and j k ( u * ) .  First, we set U = u0+ U and j k ( u ) =  w with uo a real 
number and U a pure (hyperbolic) octonion. Then, 

N ( X R ) ’  = ( ( u O +  u ) w ) ( w * ( u O -  0 ) )  

= (uow) (  w*uo) - ( u o w ) ( w * u )  + ( u w ) ( w * u o )  - ( u w ) ( w * u ) .  (34) 

Second, the desired result follows by applying to (34) two properties (see [44]), namely, 
the identity u ( u * u ) = ( u u ) u * ,  which holds for any U and U in an alternative algebra 
endowed with a conjugation, and the so-called Moufang identity U( u w ) u  = ( u u ) (  w u ) ,  
which holds for any U, U and w in an arbitrary alternative algebra. 

Property 3. We have 

X F ’ ( A ( c ) )  E M l  and Yt‘t:k’(A(c)) s M ;  (35) 

where M t  is the subset of Mk containing elements of squared norm positive or null only. 

Proof: For any U in A ( c ) ,  we obtain 

j k ( Y t F ’ ( u ) )  = X F ’ ( u ) .  (36) 
Consequently, Y‘;”( U )  belongs to M k .  The proof is completed by noting that, according 
to property 2 ,  X F ’ ( u )  has a squared norm positive or null. 

Property 4. The manifold Gk = exp( Hk) is a Lie group. 

Proof: It follows immediately from the Lie-admissible structure of Hk which is outlined 
in § 2. 
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From the definition of H A ,  we remark that each element of Gk is either a (hyperbolic) 
complex number of norm i l  when 2m = 2 and 4 or a (hyperbolic) quaternion of norm 
*1 when 2 m  = 8. 

Property 5. The coset Gk/Zz  is the kernel of the Hurwitz transformations Xf’  and XLk’. 

ProoJ: Let u be an element of G,. According to our preceding remark, v is of norm 
*l. Furthermore, we have 

j k (  U )  = U* (37 )  
because u is either a (hyperbolic) complex number or a (hyperbolic) quaternion. Let 
us now calculate X F ’ ( u u )  for an arbitrary element U in A(c).  We get 

~ g ’ ( u u )  = ( u u ) ( u * j , ( u ) ) .  (38) 
When the dimension of A(c)  is 2m = 2 or 4, the right-hand side of (38) is easily seen 
to be u j k ( u ) .  The same result may be reached when the dimension of A(c)  is 2 m  = 8. 
To prove the latter assertion it is convenient: first, to decompose U as U = (w, x), where 
x and w are, in the notations of (13)-(21), two elements of the algebra 1 0 H k  and 
second, to realise that UWU* = w. As a partial conclusion, we have XF’( uu) = ujk( U )  
for U in A(c)  and u in Gk. Furthermore, each U in Gk can be multiplied by -1 without 
any change of X ~ ~ ’ ( U U )  = u j , ( u )  and the kernel of .Kp’ is hence G k / Z z .  

Table 5 lists all the kernels Gk/Z2  corresponding to 2m = 2,  4 and 8. For 2 m  = 2,  the 
space Hk is generated either by a pure complex number or by a pure hyperbolic 
complex number, so that exp(Hk) identifies to either U( 1) or ROR and Gk/Zz  to either 
S O ( 2 )  or SOo(l,  l ) ,  respectively. For 2 m  =4, the same reasoning leads to the kernel 
SO(2) in the quaternionic case and to the kernel SO(2) or SOo(l, 1) in the hyperbolic 
quaternionic case. For 2m = 8. we first consider the octonionic case. Then, we know 
that Hk is generated by a pure quaternion. Therefore, exp( H k )  identifies to S U ( 2 )  and 
the coset Gk/Z2 to SO(3). Secondly, in the hyperbolic octonionic case, Hk is generated 
either by a pure quaternion or by a pure hyperbolic quaternion, so that exp(H,) 
identifies to either S U ( 2 )  or SU(1 , l )  and GA/Zz to either SO(3) or SOo(l, 2 ) ,  respec- 
tively. 

3.2. Hurwitz transformations and Clifford algebras 

In  this subsection, we establish contact between the Hurwitz transformations and 
Clifford algebras. We shall here again work directly in eight dimensions since the 

Table 5. The possible kernels Gi/Z, for the various Cayley-Dickson algebras A ( c , ,  c2,  c3j. 

2 

4 

8 0 SO(31 
0’ SO(3j or SOo(l,  2 )  
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(2m = 4)- and (2m = 2)-dimensional cases straightforwardly follow from the (2m = 
8)-dimensional case. 

From the generators e , ,  e?, . . . , e7 of the eight-dimensional Cayley-Dickson algebra 
A(c , ,  c2, c3), we define the following eight-component vector: 

1 1  \ 

e7 

(39) 

Then the product eke produces a real matrix r k  of order eight through 

eke = Tke ( k =  I ,  2 , .  . . , 7 ) .  (40) 

In appendix 1, we give the 8 x 8 matrices r k  for k = 1,2,  . . . , 7 in explicit form. From 
the definition of the rk ,  we readily obtain the property 

i., = ( k =  1 , 2 , ,  . . , 7 ) .  (41) 

Furthermore, we have the following preliminary lemma. 

Lemma. The set I rk ;  k = 1 ,2 , .  . , , 7 }  generates the Clifford algebra e( p ,  q )  of degree 
p + q = 7 with - p  + q being the signature of the metric g. 

Boo$ It is sufficient to combine (1) and (40). This leads to 

rkrl + rlrk = -2gk,n8 ( k  and 1 = 1 , 2 ,  . . . ,  7) (42) 

which almost completes the proof. (The 2m-dimensional unit matrix is denoted as 
I*,,,.) The (2m =4)- and (2m = 2)-dimensional cases may be obtained from evident 
restrictions of (39)-(42). 

Table 6 identifies the Clifford algebras of degree 2m-1  generated by { r k ;  k =  
1 ,2 , .  . . , 2 m  - 1) for 2m = 2, 4 and 8. The notations % ( p ,  q ) ,  N, and R(s)  in table 6 
refer to the work of Salingaros [45]. Note that N I  is isomorphic to R(2), R(s) being 
the algebra on R of s x s real matrices. 

We are now in a position to translate the product of two arbitrary elements of 
A(c, ,  c2 ,  c3) in terms of the Clifford matrices r A .  To each element U in A(c , ,  c2,  c3), 

Table6 The Clifford algebras %( p ,  q )  associated with the various Cayley-Dickson algebras 
A ( c i ,  cz, ~ 3 ) .  

Dimension 2 m  
of A ( c , ,  ~ 2 ,  ~ 3 )  Triplet ( e , ,  c2,  c,) Clifford algebra Yip, 4 )  

2 

4 
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cf (3), we associate the eight-dimensional (real) vector 

Then (3) can be rewritten 

U = lie = b. (44) 

Further, the product uu for U and U belonging to the algebra A( c l ,  c2,  c,) is, in matrix 
form, 

or, equivalently, 

By introducing the 8 x 8 matrix 

A ( u )  = uon,+ U k ~ k  
k = l  

(47) 

the product uu can be finally transcribed as 

uu = 2A( U)U. (48) 

The explicit expression of A(  U )  is obtained by putting the matrices r k  of appendix 
1 into (47). This yields 

U0 C l U l  

U1 U0 

u 2  - c l  u3 

U3 -U2  

U4 -c,u5 
U5 - U 4  

u6 c l u 7  

u7 U6 

A ( u )  = 

This matrix A ( u )  satisfies the following properties: 

and 

i( u)vA(  U )  = (;vu)?. (51) 

Equations (50), where U* is the matrix representative of U* = &I*, and (51) can be 
proved by replacing A ( u )  by its expression (see (47)) in terms of the matrices r k .  We 
shall refer to (51)  as a generalised Hurwitz property since i t  constitutes an extension 
of a property established by Hurwitz in the special cases cl = c2 - 1 = c3 - 1 = -1, 
c l  = c2 = c3 - 1 = -1 and cl = c2 = c3 = -1 in connection with the famous factorisation 
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problem of the sum of 2, 4 and 8 squares, respectively [40]. In this vein, ( 5 1 )  provides 
us with the solution of the following generalised (Hurwitz) problem. Given U ‘ =  
(uouI . . . U,) and v’= ( uou, . . . U,), find rit = ( wowl  . . . w,) such that 

)37w = (U‘vu)( v’7u). (52) 

The solution is (up  to matrices pseudo-orthogonal with respect to the metric 7) 

w = A ( u ) u  (53) 

where A ( u )  satisfies ( 5 1 )  and may be taken as given by (49).  (By up  to pseudo- 
orthogonal matrices we mean that we may replace, in (53), the matrix A ( u ) u  by 
R A ( u ) S u ,  where R and S are matrices pseudo-orthogonal with respect to the metric 
7.) Note that (52)  and (53) constitute indeed a rewriting of (9) with uu = w. When 
converted in arbitrary dimension, the latter generalised problem can be seen to admit 
solutions only in dimensions 2m = 8, 4 arid 2. The solutions in dimensions 4 and 2 
may be derived by taking the four- and  two-dimensional restrictions of (49)-(53) 
respectively. (The matrices A( U )  and 7 in two or four dimensions are simple restrictions 
of the corresponding matrices in eight dimensions.) 

Let us now introduce the partial conjugation matrices E ~ ,  . . . , E ,  via 

&k = diag( 1 ,  E \ , ’ ,  . . . , e: , ’ )  ( k  = 1 , 2 , .  . . , 7 )  (54) 

where E F ’  is defined as follows. We take E ; , ’ =  -1  if p belongs to { p ,  , p z , p 3 }  such 
that {ep , ,  ep2,  ep,} is a basis for the vector space Hk (cf § 2)  and E:’ = 1 if not. (From 
0 2, it is clear that the various possible { p l ,  p z ,  p 3 }  are: {1 ,2 ,3} ,  {1 ,4 ,5} ,  {1 ,6 ,7} ,  
{2 ,4 ,6} ,  {2 ,5 ,7} ,  {3 ,4 ,7}  and {3 ,5 ,6} . )  Then, we are able to realise the anti-involution 
j k  (for k = 1 , 2 , .  . . , 7 )  by noting that 

j ,  ( U )  = ;&&U. ( 5 5 )  

It is clear that the vector corresponds to an  element of A( c1, cZ, c3) that is a partial 
conjugate of U (with three changes of sign among uo, u I ,  . . . , U,). In the realisation 
afforded by (44), (48) and ( 5 5 ) ,  the right Hurwitz transformation XF’  is described by 

( 5 6 )  ypkl. . A ( c l , c z ,  cJ)+M;: h ‘ - , Z A ( u ) ~ ~ u .  

Y L ~ k ’ : A ( c l , ~ z , c , ) + M ; :  Zu’-,c?A(~~u)u. (57) 

x = x: ’ (u )  or  x = Y l f ’ ( u )  (58) 

x = A(  U ) E & U  or x = A( E & U ) U  (59) 

Similarly, for the left Hurwitz transformation YLLk’ we have 

It is convenient to use the shorthand notation 

for some fixed k, so that the eight-dimensional (real) vector x associated to x( = Zx) is 

respectively. We remark that (30 )  and ( 3 1 ) ,  and therefore property 2 ,  can be transcribed 
as i7.x = (&vu)’  with the notation of (58) and  (59). We shall continue with illustrative 
examples concerning right Hurwitz transformations (since similar results apply to both 
right and left Hurwitz transformations) in the cases 2 m  = 8, 4 and 2. The ‘inverses’ of 
the right Hurwitz transformations displayed below are relegated to appendix 2. 
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Case 2m = 8. We choose the right Hurwitz transformation x = Xg'( U )  with HI being 
the vector space spanned by e , ,  e2 and e3 (cf table 3) .  Therefore, we have 

~ = A ( u ) E , u  with e , = d i a g ( l ,  -1, -1,-1, 1, 1, 1, 1 ) .  (60) 

A simple development of (60) leads to the following explicit expression: 
x o =  1 u2- , c,u;+ c , c ,u :+  c ,u : -  c,c,uz,-  c2c3u:+ c I c 2 c s u :  

x , = o  x2 = 0 x j  = 0 

for the eight-dimensional transformation x = .?"g)( U). From (61), we can easily verify 
that 

xi-  c,x:+ c , c ,x :+  c*c,x:-  c , c2c3x;  

(62) 

which turns out to be the explicit form of (30) for x R =  x = Xg'( U )  with 11 in A( c , ,  c 2 ,  c 3 ) .  

= ( u ; - C , u : - c , u , +  2 c ,czu : - c ,u ,+c ,c ,u~+c2c3u : -c , c2c3u : )~  2 2 

Case 2m = 4. The restriction of (49) to the four-dimensional space yields 

U0 clul c2u2 -cIc2u3 

We choose H 3 ,  the vector space generated by e, (cf table 3). The right Hurwitz 
transformation x = XF)( U )  corresponding to H, is described by the relations 

xg = u;  + c, U: + c2u: + c ,  c2 u: 

X I  = 2 (  U#, + c2u2u3) 

x2 = 2( ugu* - c ,  U ,  u3) 

x3 = 0 

from which we get 

x i -  c , x : -  c2x:  = ( u ; - c , u : -  c2u;+  c , c 2 u y .  

In the special case where c ,  = c2 = -1, (64) corresponds to the usual KS transformation 
up to a relabelling of the indices a in U, ( a  = 0, 1,3,4)  and of the indices i in x i  
( i  = 0, 1 ,2) .  In  this special case, our derivation of the Hurwitz transformations by 
means of anti-involutions parallels the well known approach of the KS transformation 
from the map of W onto W defined by (cf also [43]) 

uo+ u I e l  + u2e2+  u 3 e 3 - ( u o +  u I e l  + u2e2+ u3e3)(uo+ u , e ,  + u 2 e 2 -  u 3 e 3 ) .  (66) 

In the special case where c ,  = c2 = 1 ,  (64) corresponds to the transformation used by 
Iwai [42] to reduce Hamiltonian systems with two degrees of freedom. 
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Case 2m = 2. The restriction of ( 4 9 )  and ( 6 1 )  to the two-dimensional case leads to the 
matrix 

and to the right Hurwitz transformation x = Xg'( U )  given by 
7 

X" = U:- clu; XI = o  ( 6 8 )  

respectively. The latter transformation is (like the two preceding ones) a transformation 
of magnitude two since 

( 6 9 )  

We close this subsection with a word of comment concerning the situation where 
the anti-involutions j k  for k = 1,2, . . . , 2 m  - 1 are replaced by the usual conjugation 
j,. There is then no difference between right and left Hurwitz transformations. Indeed, 
for fixed 2m, the Hurwitz transformations YLLo) = Y@'= X'O' correspond to applications 
from RZm onto R' or  R according to whether the metric g is Euclidean or  pseudo- 
Euclidean. (It should be noted that the transformation YL'"' may be defined for 2m 
arbitrary and  that the transformations Xk"' and 3LLk) ( k  = 1 , 2 , .  . . , 2 m  - 1 )  may be 
defined with the maximum of properties for 2m = 2 , 4  and 8 only.) In the case 2m = 8 ,  
the Hurwitz transformation x = X("( U )  is obtained by substituting 

x; - c ,x:  = (U; - C ]  u y .  

eO=diag ( l ,  -1, -1, -1, -1, -1, -1, -1) 

for &k in (56 ) - (59 ) .  This gives 

(71 )  x, = i7p XI = x2 =.  . . = x ,  = 0. 

The cases 2m = 4 and 2 correspond to evident restrictions of (71 ) .  In the case 2m = 2, 
it is clear that the Hurwitz transformations 3°F) and X;' identify to 3""'. 

4. QuasiHumitz transformations 

4.1. Definition and properties 

We start here with an arbitrary Cayley-Dickson algebra A (  c )  of dimension 2m. Then 
we introduce the following definition and list two immediate properties. 

Definition 3. The application 

3: A ( c )  + A ( c ) :  U * X  = 3 ( u )  = U' 

is called a quasiHurwitz transformation of A (  c). 

Property 6. The relation 

N ( x ) ? =  N ( u ) ~  

holds for any element U in A ( c ) .  
( 7 3 )  

Proof: It follows from the application of a theorem by Artin [46 ]  to 

N ( x ) '  = N ( ~ ( U ) ) '  = U'( U')* = ( UU)( u*u*). (74 )  
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Property 7. The quasiHurwitz transformation Y has a discrete kernel of type ZZ.  

This property is evident from definition 3. I t  is thus possible to consider the transforma- 
tion Y as a map from A ( c )  onto A ( c ) / Z 2 .  

4.2. QuasiHurwitz transformations in matrix form 

Let the 2m-dimensional (real) vector 

and the 2m x 2 m  matrix 
Zm-I  

A ( u )  = uOUzm + u k F k  
k = l  

be the 2m-dimensional generalisations of (43) and (47) respectively. Equations ( 7 5 )  
and (76) allow us to write x = 2( U )  in matrix form as 

x = A ( u ) u  ( 7 7 )  

and (77) is the matrix expression of the quasiHurwitz transformation de( U )  = U’ of the 
2m-dimensional algebra A ( c ) .  (Equation ( 7 7 )  has a form quasisimilar to the one of 
(60), a fact that is at the origin of the nomenclature ‘quasiHurwitz’.) We now focus 
our attention on some special cases corresponding to particular values of the dimension 
2 m. 

Case 2m = 2. Equation ( 7 7 )  leads to 

xg= u;+c ,u :  X I  = 2 ~ 0 ~ 1  

In the compact case e ,  = -1, the algebra A( -1) is C and the quasiHurwitz transforma- 
tion x = 2 ( u )  is nothing but the well known LC transformation. Therefore, by putting 

w = Xg + ix, Z =  u n + i u ,  i’= c1 = -1 (79) 

c 3 c : Z H W  = z 2 .  

the transformation 3 turns out to be the conformal map 

(80) 

It is obvious that 

which express the analycity conditions of Cauchy and Riemann, and that 

dxi+dx:  = 4 ( u i +  ui)(dui+du:) (82) 

which reflects the conformal nature of the LC transformation. By imposing U;+ U: = 1, 
it follows from property 6 that x i+  x: = 1 and, according to property 7 ,  the correspond- 
ing quasiHurwitz transformation Y may be seen as a map from SI onto S’/Z2, the 
real projective space RPI.  



Non-bijective quadratic transformations 325 

In the non-compact case c, = 1, the algebra A(1) is R and the quasiHurwitz 

(83) 

transformation 2’ may be thought of as the map 

a+ n : Z H U  = z 2  

with 

w = x,+ ix, z = U,+ i u ,  i ’=  c, = 1. (84) 

We can readily check that 

which are referred to as hyperbolic analycity conditions by Laurentiev and Chabat 
[38], and that 

(86) dx; - dx: = 4( U; - U:)( d u i  - du:) 

which reflects the so-called (cf [38]) hyperbolic conformal nature of the map Y. 

Case 2m = 4. Equation (77) yields 
2 x, = U; + c, U: + c2u2 - c, c2u: 

x, = 2uou, x2 = 2 uou2 x3 = 2u,u3. 

In the compact case c, = c 2 =  -1, the quasiHurwitz transformation 2’ is related to the 
real projective space R P 3 .  As a matter of fact, by taking U:+ U:+ U:+ uf = 1, we have 
x;+x:+x:+x: = 1, so that 2’ can be considered as a map from S3 onto S3/Zz which 
is precisely R P ~ .  

Case 2m = 8. The quasiHurwitz transformation x = 2’( U )  is 

xg = U;+ c, U f  + c2u: - c,c,u: + c,u: - c, c,u: - c2c3u;+ c, c2c,u: 

x, = 2u0u, x2 = 2ugu2 x3 = 2u,u3 x4 = 2 UOU4 (88) 

xg = 2u,u, x6= 2uOu6 x, = 2u,u,. 

In the compact case c, = c2 = c3 = -1, repeating what we have just done in the two- 
and four-dimensional cases, the quasiHurwitz transformation 2’ can be written as a 
map from S’ onto S7/z2 = RP’. 

We are now ready to briefly discuss the general case where 2m is arbitrary. In this 
case, the quasiHurwitz transformation x = L f (  U )  becomes 

x0=2u:-Ii?lu Xh =2uOul, ( k  = 1,2, . . . , 2 m  - 1) (89) 
where is the 2m-dimensional extension of the metric defined by (2) and (7). Equation 
(89) gives back (78), (87) and (88) as particular cases. In the notation of (89), (73) 
and therefore property 6 can be translated as 2 ~ x  = (;TU)’. Note that the reverse of 
(89) is formally given by 

Furthermore, the line element ds2 = dx’q dx can be shown to satisfy 

dX’7 dx = 4 d u t  J q u + 4 u ;  d i g  du+4(dSgu)* (91) 
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where g is defined by the extension of (2) to the 2m-dimensional case. It is remarkable 
that (91) reduces to the conformal expression (see (82)) and to the hyperbolic conformal 
expression (see (86)) in the particular case 2m = 2. Finally, in the 2m-dimensional 
compact case (i.e. for cl = c2 = . . . = cp = -1 with 2m = 2"), the quasiHurwitz transforma- 
tion 3 appears to be a map from S"-l onto S" - ' / h2  which identifies to the real 
projective space RP"~- ' .  

5. Geometrical aspects of the Hurwitz transformations 

In this section we suppose that U is an  element of A ( c , ,  c2,  c3) such that N (  U)' = 1 
and examine the Hurwitz transformations x = X\"( U )  or Xt',"'( U )  for the two-, four- 
and eight-dimensional cases in the compact and non-compact versions. The compact 
version yields Hopf fibrations (on spheres) and the non-compact one what we call 
pseudoHopf fibrations (on hyperboloids). 

5.1. The two-dimensional case 

In this case, U belongs to C = A(-1) or R = A(1) and N ( U ) ~  = 1 means that U is on 
the real sphere SI (of equation U:+ u f  = 1)  or on the hyperbola H I (  1, 1) (of equation 
U;- U: = l ) ,  respectively. Consequently, the Hurwitz transformation x = X y l (  U )  = 
%$'(U) induces a trivial map from SI or H'(1,I )  onto {1} according to whether U is 
a n  element of C or R. 

5.2. The four-dimensional case 

If U belongs to W = A(-1, - I ) ,  then N ( u ) ?  = 1 means that U stands on the real sphere 
S3. The Hurwitz transformations x = X\"( U )  and Xt',"'( U )  for k = 1, 2 or 3 satisfy 

with one of the x, vanishing. Then each of the latter transformations (which all 
correspond to the K S  transformation) describes the Hopf fibration on spheres S3+  S' 
of fibre SO(2) (that is homeomorphic to the real sphere SI), a known result as far as 
the KS transformation is concerned. 

If U belongs to N, = A ( c , ,  cl) with c, = i l  (for i = 1 and 2) and ( c l ,  c2) f (-1, - l ) ,  
then the condition 

N ( u ) ' =  u ; - c , u f - C 2 U ; + C I C 2 U ~ =  1 (93) 
means that U is on a single-sheeted hyperboloid which we denote as H3(2 ,2 ) .  We 
restrict ourselves to (c, ,  c2) = (-1, l) ,  a choice which does not induce any loss of 
generality. Thus, the equation of H'(2 ,  2 )  is 

(94) 
Following the results of B 3, we can foresee two types of Hurwitz transformations, 
namely either ( i )  transformations with compact fibre or ( i i )  transformations with 
non-compact fibre. 

( i )  An example of the first type of Hurwitz transformation is x = X:'( U )  which gives 

7 - 7 ,  

u 6 + u ~ - u ~ - u ; =  1. 

(95) 
7 3 -  1 ,  , , ,  

(U;+ U ;  - U ;  - U;)-= X G - X ~  - x j  = 1. 
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This transformation describes the pseudoHopf fibration on hyperboloids H 3 (  2 , 2 )  + 

H2( 1 ,  2)0 of fibre SO(2) = SI, where H’( 1 ,  2)0 is the upper sheet of the two-sheeted 
hyperboloid H2( 1 ,2 )  of equation 

xi-xi -x:= 1. (96) 
(It is easy to verify that X;’(H3(2,2)) is H2(1,2)0 rather than H2(1,2)  because 
xo = E.’,=o U’, remains positive.) We note that this fibration is inherent to the work of 
Iwai [42] on the reduction, by an S’ action, of Hamiltonian systems with two degrees 
of freedom. 

(ii) We consider now the second type of Hurwitz transformation in the four- 
dimensional non-compact case with ( c , ,  c 2 )  = (-1, 1). An example of such a type of 
transformation is x = Xg)( U )  which gives 

(97) 2 2 2 2 2 7  (U;+ U:- U? - U,) = X 0 + X I  -x;  = 1 .  

This Hurwitz transformation describes a new pseudoHopf fibration on hyperboloids, 
namely the fibration H3(2, 2)  + H2(2, 1 )  of fibre SOo(l, 1 )  (that is homeomorphic to 
the real line R), where H2(2, 1) is the single-sheeted hyperboloid of equation 

(98) 
Similar results may be derived for the doublets (c , ,  c2) = ( 1 ,  - 1 )  and ( 1 ,  1 )  in the 

cases (i) and ( i i ) .  
Topologically, H3(2, 2 )  is homeomorphic to R2 x SI. Therefore, the fibrations (i) 

H3(2, 2) -+ H2(1, 2)0 of fibre SI and (ii) H 3 ( 2 ,  2)  + H2(2, 1 )  of fibre R are trivial because 
H 2 (  1 ,  2)0 and H 2 ( 2 ,  1 )  are homeomorphic to R2 and R x SI, respectively. 

x i +  x: - x’, = 1. 

5.3. The eight-dimensional case 

The Hurwitz transformations x = X l k ’ ( u )  and X ~ ’ ( U )  with k = 1 ,2 , .  . . or 7 for U in 
O=A(-1 ,  - 1 ,  - 1 )  such that N(u)’= 1 satisfy 

with three of the x, vanishing. Then, each of the latter transformations describes the 
well known Hopf fibration on spheres S7 + S4 of fibre SO(3) (that is homeomorphic 
to the real sphere S3) .  

If U belongs to O r =  A(c, ,  c 2 ,  c3) with ci = *l (for i = 1 , 2  and 3)  and ( c , ,  c2 ,  c,) f 
( - 1 ,  - 1 ,  -1),thenthecondition N(u) ’=  1 (see (5 ) )  meansthat U liesonasingle-sheeted 
hyperboloid which we denote as H7(4,4) .  Without any loss of generality, we take 
( c , ,  c 2 ,  c,) = ( - 1 ,  -1, 1 ) .  Hence, the equation of H7(4, 4) is 

(100) U;+ U:+ U:+ U: - U:- U: - U:- U’: = 1 .  
We foresee two types of Hurwitz transformations: (i)  Hurwitz transformations with 
compact fibre and (ii) Hurwitz transformations with non-compact fibre. 

(i) An example of the first type of Hurwitz transformation is x =. X;’( U )  which 
yields 

(U;+ U?+ U;+ U: - U:- U: - U;- U’:)’ = x i -  x:- x: - x i -  x; = 1 .  (101) 
This transformation leads to a new pseudoHopf fibration on hyperboloids, namely 
H7(4,4)+  H4( l ,4)0  of fibre S 0 ( 3 ) = S 3 ,  where H4(l,4)0 is the upper sheet of the 
two-sheeted hyperboloid H4( 1,4) of equation 

(102) 
? > >  x i -  x i -  x; - x i -  x: = 1 .  
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(It  is clear that X“’(H7(4 ,4) )  = H4(1,4)0 and not H4(1,4)  since X ~ = X : = ~  U’, is 
positive.) 

( i i )  Let us now consider the second type of Hurwitz transformation in the eight- 
dimensional non-compact case with (c, ,  cz, c3) = (-1, -1, 1). An example of such a 
type of transformation is x = Xg’( U )  which gives 

2 - 7  
(U;+ U:+ U:+ U : - U ~ -  U:- U:- U$)’= x;+x~+X,-X,-Xi= 1. (103) 

This Hurwitz transformation describes a new pseudoHopf fibration on hyperboloids, 
namely H7(4,4) + H 4 ( 3 ,  2) of fibre SO,( 1 ,2)  (that is homeomorphic to R2 x SI, a fact 
readily understood if we remember that SO( 1 ,2)  = SU( 1, l ) /Zz) ,  where H4(3, 2 )  is the 
hyperboloid of equation 

x;+x:+ x: - x:-x: = 1. (104) 

Of course, similar results apply, both for (i) and (ii), to the six other triplets 
(c,, c2, c3)  # (-1, -1, -1) and (-1, -1, 1). 

Topologically, H7(4 ,4)  is homeomorphic to R4 x S 3  while H4( 1,4),  and H4(3, 2 )  
are homeomorphic to R4 and R2 x S’, respectively. Consequently, ( i )  the pseudoHopf 
fibration H7(4 ,4)  + H4( 1,4), of fibre S’ is a trivial fibration while ( i i )  the pseudoHopf 
fibration H7(4,4)  + H4(3, 2)  of fibre R‘ x SI is a non-trivial fibration (cf the non-triviality 
of the classical Hopf fibration S3+ S’ of fibre SI). 

6. Differential aspects of the Hunvitz transformations 

The aim of this section is to provide some differential expressions for the Hurwitz 
transformations. We shall deal with right Hurwitz transformations since the left Hurwitz 
transformations may be treated in the same way. In each of the cases 2m = 8, 4 and 
2 ,  we shall consider a typical Hurwitz transformation. 

6.1. The two-dimensional case 

There is only one Hurwitz transformation, namely Xt). According to $ 3 ,  such a 
transformation may be described by the 2 x 2 matrix A( U )  of (67) via the relation 
x = A(u)E ,u .  Then, it is straightforward to derive five properties. 

Property 8. We have 

(‘:) = ~ A ( u ) E , (  :::) (105) 

where w = 2( u I  duo- u0 d u , )  is a 1-form rather than a total differential. Because the 
transformation X:’ maps R‘ onto R or R’, it is possible to require w = 0. This leads 
to the following property. 

Property 9. We have 

dxi  = 4r(dui  - c, d u f )  

where r = N ( u ) ’ =  U;- c,ui.  

We can now derive the transformation law of the partial derivation operators (a/au,)  
( a  = 0 , 1 )  under X:’. 
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Property 10. We get 

where 17 = diag( 1, -cl)  and 
a a x = - C , U ,  --U"-. 

au, a u ,  

(107a) 

(107b) 

The operator X can be interpreted as a vector field defined in the basis {alau,, a/au,} 
of a tangent space at the point (uti, U , ) .  

If we introduce the action of a 1-form du, on the vector a / a U p  by du,(a/au,) = 6 ( a ,  p ) ,  
we obtain the next property. 

Property 11. We have w[( l /2r)X]= 1. 

As a corollary of property 10, it is possible to express the transformation law of 
second-order (elliptic or hyperbolic) differential operators under X g  '. By defining V u  
by v u  = [(a/au,)(a/au,)], we may set out the last property. 

Property 12. We have 

a' 1 a 1 -  1 
ax, xo ax, 4r 4r' 
2+- -=-v,~v,+-C,x' 

When c, = -1, (108) takes the particular form 

1 
A, - y X 2  

ax, x, ax, 4r 4r 
a 2 i a  1 
2+--=- 

where A, stands for the two-dimensional Laplacian and 

(1094  

(109b) 

is the infinitesimal generator of a compact group SO(2). Equation ( 1 0 9 ~ )  was equally 
well derived by Kibler and NCgadi [47]. 

When c, = 1, (108) specialises to 

where U,, is the D'Alembertian 
a? 

0 =--- 
" a u t  au: 

and 

(1 loa) 

(1 lob) 

(1 10c) 

the infinitesimal generator of a non-compact group SO(1, 1). It is to be realised that 
the left-hand side of ( 1 1 0 ~ )  cannot be defined on the 'light' cone u t -  u:=O. 
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6.2. The four-dimensional case 

We consider the Hurwitz transformation X ? ) (  U )  described by the 4 x 4 matrix A( U )  

of (63). The infinitesimal version of x = A ( u ) c 3 u  may be understood through the 
following property. 

Property 13. We have 

where the 1-form w = 2(u3 duo- uo du3+ U ,  du2 - u2 du,)  is not a total differential. The 
transformation X?) maps R4 onto R3 or R+ x R2 so that it is possible to demand that 
w = 0. This yields (1 12a) below. 

Property 14. We get 

dx i -c ,  dx:-c2dx:=4r(du~-c,  du:-c2du:+c1c2du:) (1 12a) 

where 

The transformation law of the partial derivation operators a/au,  (a = 0, 1 ,2 ,3)  under 
X f ’  is given by a property (property 15) which turns out to be the analogue of property 
10. 

Property 15. We have 

where 7 is the metric T )  = diag(1, - c l ,  -c2, c,cJ and X a vector field 

(113a) 

(113b) 

The action of the 1-form w on the vector field (1/2r)X is given by a property analogous 
to property 11. 
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At this point, we encounter a difference between the four-dimensional and the 
two-dimensional cases. Indeed, the following property, which concerns the transforma- 
tion law of second-order differential operators under Xg), should be compared with 
property 12. 

Property 16. We have 

a’ a’ a’ 1 - 1 
ax: ’ax: 2ax: 4r 4r2 ’ ,,vv,, --c c x2 -- -- - = -v ( 1  14a) 

where V u  is defined by 

( 1  146) v -,, = ( a  ---- a a ”). 

au, au, au, au, 

When c, = c2 = - 1 ,  ( 1  14a) may be particularised as 

( 1 1 5 ~ )  

where A, and A,, are the three-dimensional and four-dimensional Laplacians in the 
variables x, ( i  = 0, 1,2)  and U, (a = 0, 1,2 ,3)  respectively. Further, the operator 

a a a a x = u  3 - - u , - + u , - - u 2 -  
au, au, a u 2  au, 

(115b)  

happens to be the infinitesimal generator of a group of type SO(2).  This may be easily 
seen with the following parametrisation: 

4 - +  6 sin - 
2 

U ,  = J; cos - 4 + +  6 
2 2 

cos - U0 = J; cos - 
2 

4 + +  6 u3 = J; sin - cos - 
2 2 2 2 

u2 = J; sin sin f 

which leads to X = -2 a/a+. (Note that the latter choice of coordinates gives xo = 
r cos 6, x, = r sin 0 cos 4 and x2 = r sin 6 sin 4, cf [8] and [48].) We close the four- 
dimensional compact case c, = c2 = - 1  with three remarks. First, (115a) was obtained 
by Kibler and NCgadi [48]. Second, the four- and three-dimensional volume elements 
are connected through dp(R3)  = (4N(u)’/7r) dp(R4);  such a connecting formula 
appears to be of considerable importance for physical applications of the R4 + R3 
Hurwitz transformation as we shall show in a forthcoming paper. Third, it was 
mentioned by Vivarelli [49] that the constraint w = 0 is related to the Souriau quantisa- 
tion of the symplectic manifold S 2 .  

When c 1 = c 2 = l r  (114a) yields (for r=u;-u:-u:+u:#O) 

( 1  17a) 

where 

a a a a x = U  3 - - u , - + u 2 - - u ,  - 
au, au, a u ,  au, 

(1176) 
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is the infinitesimal generator of a group of type SO(2) .  The latter point may be seen 
with the parametrisation 

u0 = J; COS $(4  + $) cosh fo x = -2 a l a $  
u I  = fi sin f (  4 - $) sinh 40 
u2 = A  cos f ( 4  - $) sinh $0 
uj = d? sin f (  4 + $) cosh f 0  

x, = r cosh 0 
xI  = r sinh 8 sin 4 
x2 = r sinh 8 cos 4, 

=3 (118) 

When c l = F 1  and c2=*1 ,  (114a) leads to (for r = u ~ * u w f F u ~ - u ~ # O )  

where 

a a a a x*= -U3-- U,--* U,-* U ,  - 
au, au, - a u ,  au2 

( 1  19a) 

(1196) 

is the infinitesimal generator of a group of type SO(1 , l ) .  This can be seen from the 
parametrisations 

U, = fi cosh +($ - 4 )  COS f0 X, = 2 a l a +  
U ,  = f i  cosh f (4  + $) sin f0 x,= r cos e 
u 2 = ~ s i n h f ( $ + $ ) s i n ~ 0  x , = r s i n  e c o s h 4  
u3 = J; sinh +( 4 - 4 )  cos f 0  x2 = r sin e sinh 4 

=3 (120) 

and 

u o = f i c o s h f ( 4 + $ )  cost0 X-=-2a/a+ 
U ,  = A  sinh f ( $  - 4 )  sin f0 
u2 = J; cosh f( + - 4 )  sin $0 
u3 = h sinh f( 4 + $) cos f e  

xo= r cos 0 
x, = r sin e sinh 4 
x2 = r sin 0 cosh 4, 

* (121) 

6.3. The eight-dimensional case 

We choose the Hurwitz transformation x = %$!’(U) discussed in 0 3 by means of the 
8 x 8 matrix A ( u )  of (49) and we list the five following properties. 

Property 17. We have 

where the 1-forms w I  , w 2  and w 3 ,  which are not total differentials, are 

w,=2(uI  d u , - u , d u , + c , u , d ~ , - ~ , ~ ,  du2+c3u,du4 

- ~ 3 ~ 4  du, + C ~ C ~ U ;  du, - ~ 2 ~ 3  ~6 du7) 
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w1= 2( ~2 duo- U" du,+ C I U ~  dui - C l U I  du,+ c3u6 du4 

- C3Uq dU6 + Cl C3U5 dui - Cl C 3 U 7  dus) (123) 

w3 = 2( U, duo - U" du3 + U2 dui - U1 du, + C3 U, dud- C3U4 dU7 + C j U 5  d U6 - c3u6 dug). 

In view of the fact that the transformation x = XG)( U )  described by x = A ( u ) E ~ u  is an 
R8 + Rs or R' x R4 surjection, we may assume that wI = w 2  = w 3  = 0. 

Property 18. The constraints w ,  = w 2  = w 3  = 0 make it possible to obtain 

d x i -  ~3 d x i +  clc3 dx:+ ~ 2 ~ 3  d x i -  C ~ C ~ C ~  dx: 

= 4 r ( d u i - c l  d u : - c 2 d u i + c I c ? d u : - c j d u ~  

where r = N ( u ) '  is given by (5). 

Property 19. We have 

a a a a a a a a x3 = c1c>u) -- U, -- c>u2 --$ c1 U )  -- c1czu7 -+ c2u6 -+ cl US -. 
au, au, a u ,  a u2 au, au, au5 au6 

I t  is easy to check the commutation relations 

[XI, X2l = 2x3 [ xz , X,] = -2C,X, [X,, XI]= -2c,x, .  (127) 
Therefore, the set {XI ,  X z ,  X , }  generates the Lie algebra of SO(3) or SO( 1 ,2)  according 
t o w h e t h e r ( c , , c 2 ) = ( - l , - 1 )  or ( c l , c J # ( - l , - l ) .  
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Property 20. The action of the 1-form w, on the vector field ( 1 / 2 r ) X k  is given by 

Property 21. Elliptic and hyperbolic operators are connected for r # 0 through 

a2 a' a' a2 a' -- c , ,+c , c , -+c2c ,~ -c1c~cJ - - i  
ax: ax, a d  ax, ax, 

1 -  1 1 1 
= - V u ~ V , + - c  x:+-c x f - - c  c x :  

4r 4r2 ' 4r2 ' 4r2 

where V u  is defined as in the two- and four-dimensional cases. Equation (129)  may 
be worked out for the various possible choices of the triplets ( c l ,  c 2 ,  c 3 ) .  Let us just 
mention that in the compact case c1 = c2 = c3 = -1, (129)  becomes 

where A, and A,, are the five-dimensional and the eight-dimensional Laplacians in the 
variables xi ( i  = 0 , 4 , 5 , 6 , 7 )  and U, (a = 0, 1, . . . , 7 ) ,  respectively. The seven remaining 
(non-compact) cases are left to the reader as an exercise. 

We close this section with the following remark. In the situation where r = 1, the 
Hurwitz transformations considered in this section lead, according to P 5, to Hopf and 
pseudoHopf fibrations. Then, the operators of type X ,  which occur in (log), (114)  
and (129) ,  define vector fields tangential to the fibre of the above mentioned fibre 
bundles. 

Work is currently in progress by one of the authors (DL) on the use of differential 
properties of non-compact Hurwitz transformations and of the corresponding 
pseudoHopf fibrations for solving field equations of several non-linear sigma models 
on curved non-compact spaces. 

7. Concluding remarks and applications 

The aim of this section is threefold. First, we sum in 9 7.1 the main mathematical 
results of this work. Second, in 9 7.2,  we deal with some physical applications of the 
formalism developed in the present paper. We limit ourselves in 9 7.2  to enunciating 
results since applications will be the object of separate publications. Third, we examine 
in 9 7.3.  on the basis of preliminary results already obtained, some other possible 
applications of our formalism. 

7.1. The main results 

( a )  We have generalised three R'" +RZm-' quadratic transformations useful in theo- 
retical physics, namely, the Levi-Civita transformation [ 11, the Kustaanheimo-Stiefel 
transformation [ 6 , 7 ]  and a transformation recently introduced by Iwai [42]. This has 
led us to compact and non-compact ( i )  R Z m  + R2" quasiHurwitz transformations, with 
2m arbitrary, which comprise the (compact) LC transformation for 2m = 2  and (ii) 
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Hurwitz transformations, with (2m, 2m - n )  = (2, l ) ,  (4,3'1 and (8,5), 
which comprise the (compact) K S  transformation and the (non-compact) Iwai transfor- 
mation for ( 2 4  2m - n )  = ( 4 , 3 ) .  All these transformations have been obtained in a 
unified algebraic framework based on the use of Cayley-Dickson and  Clifford algebras. 

( b )  We have investigated the quasiHurwitz and Hurwitz transformations from a 
geometrical viewpoint. Among the most important results is the demonstration that 
the compact Hurwitz transformations are related to some of the famous Hopf fibrations 
on spheres and the non-compact Hurwitz transformations to new fibrations, i.e. fibra- 
tions on hyperboloids. More specifically, the R" + R 2 m - n  Hurwitz transformations 
may be geometrically classified as follows. ( i )  For (2m, 2m - n )  = (8, 5) ,  we have three 
types of Hurwitz transformations: two types with a compact fibre S3 and one type with 
a non-compact fibre R 2 x  Si .  ( i i )  For (2m, 2m - n )  = (4 ,3 ) ,  similar results apply. We 
obtain two types of Hurwitz transformations with a compact fibre Si and one type of 
Hurwitz transformations with a non-compact fibre R. ( i i i )  For the limiting case 
(2m, 2m - n )  = (2, l ) ,  there are only two distinct Hurwitz transformations: one with a 
compact fibre S' and another with a non-compact fibre R. 

(c )  We have studied the transformation properties of various quantities (as line 
elements, gradient operators and Laplacians or d'Alembertians) under quasiHurwitz 
and Hurwitz transformations. Such a study constitutes an indispensable preliminary 
for passing to physical applications. In particular, a detailed examination of the 
contents of Q 6 yields the following result: the different RZm +RLm-"  Hurwitz transfor- 
mations connect generalised Laplace operators, in R2m-n  and RZm, invariant under Lie 
groups (say G2m-,, and Gzm respectively) of type orthogonal or  pseudo-orthogonal, 
For instance, the possible couples [GZm_,,, G z m ]  are for the non-trivial cases 2m = 4 
and 8: ( i )  [ 0 ( 5 ) ,  0(8)],  [O( l ,  4), 0 ( 4 , 4 ) ]  and [ 0 ( 3 , 2 ) ,  0 ( 4 , 4 ) ]  when ( 2 4  2m - n )  = 
( 8 , 5 )  and ( i i )  [ 0 ( 3 ) ,  0(4 ) ] ,  [ 0 ( 1 , 2 ) ,  0 ( 2 , 2 ) ]  and [ 0 ( 2 ,  l ) ,  0 ( 2 , 2 ) ]  when (2m, 2m - 
n )  = (4 ,3 ) .  The latter result dictates the general philosophy for applying Hurwitz 
transformations to classical or quantum theory. More precisely, a given R2" + R2m-n  
Hurwitz transformation allows us to convert a problem involving a symmetry group 
G2m-n (and  possibly an  invariance group Gin,-,,) into a problem in higher dimension 
and  involving a symmetry group Gzm (and  possibly an  invariance group G;,,,). 

( d )  As a by-product of our algebraic approach to non-bijective quadratic transfor- 
mations, we have obtained a non-compact extension of the Hurwitz theorem [40] on 
the product of two sums each containing 2m = 2, 4 or 8 squared integers. The central 
result is that the non-compact extension can be performed only if the considered sums 
involve metrics of the type (++++----) for 2m =8,  (++--) for 2m = 4  and (+-) 
for 2m = 2. 

~ 2 m  ~ ~ 2 m - n  

7.2. Applications 

We show here the interest in our algebraic and geometric formalism for (i) the search 
for spectrum generating algebras and dynamical invariance algebras for simple quantum 
mechanical systems and ( i i )  non-linear sigma models on curved spaces. We only show 
the main results because a complete treatment can be found in separate publications 
[52-541. 

7.2.1. Invariance and non-invariance algebras. We begin with an example. The dynami- 
cal invariance algebra for the bound states of the hydrogen atom and the spectrum 
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generating algebra for the whole spectrum of the hydrogen atom are known to be so(4) 
(see [ 5 5 ] )  and  so(4,2) (see [%I), respectively. Both algebras (or the associated covering 
Lie groups) are obtained, in the standard treatments, by raising the number of degrees 
of freedom. We thus pass from the symmetry group SO(3)  to the dynamical invariance 
group SO(4) and from SO(4) to the spectrum generating group S 0 ( 4 , 2 ) .  In the 
framework of our formalism, the corresponding Lie algebras may be obtained very 
quickly by a restriction process as follows. The Hurwitz transformation YI$’ with 
c, = c2 = c, - 1 = - 1  allow the transformation of the Schrodinger equation for the 
hydrogen atom in R’ into the Schrodinger equation for an  isotropic harmonic oscillator 
in R4 subjected to a constraint. First, let us consider the case of the discrete levels for 
the hydrogen atom. Then the oscillator is an ordinary one (i.e. with attractive potential), 
the dynamical invariance algebra of which is su(4). By introducing in su(4) the 
constraint X = 0, cf ( 1  14) with cl = c2 = - 1 ,  we end up  with a Lie algebra under constraint 
which is isomorphic to so(4), the dynamical invariance algebra for the discrete spectrum 
of the hydrogen atom. Second, if we introduce the vanishing vector field X = 0 in 
sp( 8, R), the non-invariance algebra for a four-dimensional isotropic oscillator, we 
obtain another Lie algebra under constraint which turns out to be isomorphic to 
so(4 ,2) ,  the spectrum generating algebra for the three-dimensional hydrogen atom. 

Lie algebras under constraint(s) may be obtained for each of the Hurwitz transfor- 
mations associated to 2m = 8, 4 and 2. It is sufficient to introduce X, = X ,  = X ,  = 0 
(see (125)) in sp(16,R) for 2 m = 8 ;  X = O  (see (113a) )  in sp(8,R) for 2 m = 4 ;  and 
X = O  (see (107a) )  in sp(4,R) for 2m = 2 .  The main results, to be proved at length 
elsewhere [ 5 3 ] ,  are the following ( L ,  stands for a Lie algebra under constraint(s)). (i) 
For (2m, 2m - n )  = (8 ,5) ,  we obtain L ,  = s0(6 ,2)  for all transformations with an S 3  
fibre and L ,  = so(4 ,4)  for all transformations with an  R2x S‘ fibre. (ii) For (2m, 2m - 
n )  = (4 ,3 ) ,  we obtain L ,  = s0(4 ,2)  for all transformations with an SI fibre and L, = 
so(3,3) for all transformations with an  R fibre. (iii) For ( 2 4  2m - n )  = (2, l ) ,  we obtain 
L ,  = s o ( 2 , l )  for the transformation with a n  SI fibre and L,  = so(2, l )  for the transforma- 
tion with an  R fibre. From a mathematical point of view, the remarkable result is that 
there is a one-to-one correspondence between Lie algebras under constraint( s)  and 
types of fibre. Therefore, for a given doublet (2m, 2m - n ) ,  there are only two types 
of Lie algebras under constraint(s) corresponding either to a compact fibre or a 
non-compact fibre. The latter result may be rationalised, a posteriori, if we realise that 
the fibrations of § 5 with compact (non-compact) fibres are associated with compact 
(non-compact) constraint operators. 

As an  immediate consequence of result (ii), we may foresee that the spectrum 
generating algebra of a hydrogen atom in R8 is s0 (6 ,2 ) .  Another immediate application 
concerns the Hartmann potential V =  - a / r +  b / (  r sin 6)’ with a > 0 and b > 0. This 
potential has recently received a great deal of attention [52,57] both in a Schrodinger 
partial differential equation picture and a Feynman path integral picture. The relevant 
chain of Lie algebras for the Hartmann potential problem is clearly sp(8, R) 2 su(4) 3 

so(4) 2 so(2) x so(2) if use is made of the compact Hurwitz transformation for 2m = 4. 
The dynamical invariance algebra for the three-dimensional Hartmann potential then 
corresponds to the Lie algebra so(4) under the constraint X = 0 with c, = c2 = c, - 1 = -1. 
The resulting Lie algebra under constraint is simply su(2), a result fully discussed in [53]. 

7.2.2. Sigma models. Let M and N be two Riemannian manifolds. Then, a smooth 
map f :  M + N is said to be a solution of the sigma model defined on M ,  with values 



Non-bijective quadratic transformations 337 

on N,  if and  only if it is a harmonic map [ 5 8 ]  from M to N. We use f :  M 7 N to 
denote the fibrations of § 5 .  

As a first result, we can prove that each fibration f : M 7 N, of fibre F, is harmonic. 
Therefore, f is a solution of the sigma model defined on M and with values on N .  
For the compact cases, this result is not new. As a matter of fact, it is well known 
that the classical Hopf fibrations define harmonic maps, a property recently reinter- 
preted in the language of sigma models by Fujii (see [41]). For the non-compact cases, 
our result happens to be new and gives explicit realisations of harmonic maps between 
hyperboloids. For example, the fibrations H'(2,2) + H 2 (  1,2),  and H7(4, 4) + H4( 1,4),  
provide explicit solutions for the sigma models H'(K) + MPS', where H ' ( K )  is the 
1-hyperboloid on K2 with K = C or W and KPS' is the hyperbolic space on K. ( In  the 
terminology of Gilmore [ 5 9 ]  we have more generally KPS" = U ( n ,  1; K ) / U ( n ;  K) x 

Let us now restrict our attention to the fibrations f :  M ;IV for the cases 2 m  = 4 
and 8. In these cases, F is a Lie group and  we call X, the generator(s) of F with j = 1 
if 2m = 4 and  j = 1, 2 and 3 if 2 m  = 8. We thus have a second important result. If (D 
is a solution of the sigma model defined on N and with values on a Riemannian 
symmetric space G/H,  then Y = 4 o f  is a solution of the sigma model defined on M 
and with values on G / H .  Furthermore, the solution Y is invariant under F so that 
X,Y = 0 for each j .  Our second result can be shown as 

U(1; K).) 

M 

Finally, it is to be mentioned that this second result leads to non-trivial analogues of 
the passage formulae introduced in [17] and  worked out further in [ 6 0 ] .  

7.3. Towards future investigations 

7.3.1. PseudoHurwitz transformations. In the last analysis, the quasiHurwitz and Hur- 
witz transformations may be regarded'as special cases of transformations of the type 
x = A(u)Eu.  They follow from specific choices for the matrix E = diag( 1, E ' ,  . . . , E ~ , , - ' )  

with E,  = i-1, 1 s a s 2m - 1. The transformations which are neither Hurwitz nor 
quasiHurwitz transformations are called pseudoHurwitz transformations [61]. For 
2 m  = 2 and 4, the latter transformations d o  not lead to something new but, for 2m = 8, 
we have a preliminary result. In this case, the pseudoHurwitz transformations corre- 
spond to R 8 + R 7  maps which provide explicit realisations for the Hopf fibration 
S7 + C P 3  of compact fibre S' and its non-compact analogues, namely (up  to homeo- 
morphisms), R4 x S3 + R4 x S2 of compact fibre SI and R4 x S3 + R3 x S3 of non-compact 
fibre R. We note that the last two fibrations are new and  that the fibration S7 + CP3 
is of central importance in twistor theory. 

7.3.2. Canonical transformations. The quasiHurwitz and Hurwitz maps correspond to 
transformations of a 'distance' in R'"-" into (the square of) a 'distance' in R2". A 
question now arises. What is the parentage of the Hurwitz (and quasiHurwitz) transfor- 
mations with canonical transformations? A partial answer appears in [3 11, especially 
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for the K S  transformation. We give here a property which might be a good starting 
point for studying the link between Hurwitz transformations, canonical transformations 
and homogeneous canonical transformations developed by Dirac (see [62]). For fixed 
(2m, 2m - n), let us define the 2 m  - n components dq, by dx, and the 2m components 
dQ, by du,. Similarly, let p, = a/&, and Pa = d/du , .  Then we can derive the property 
that 

I n 

where the sum over i extends on 2m - n values and the one over cy on 2m values with 
(2m, 2m - n )  = ( 8 , 5 ) ,  (4 ,3)  and (2, 1). We note that the latter relation corresponds to 
a (bijective) canonical transformation in classical mechanics. We also note that the n 
constraint conditions X ,  = 0 correspond to primary first-class constraints in the sense 
of Dirac [62]. 

7.3.3. Path integral methods. In recent years, path integral techniques have been 
applied, in conjunction with the use of the compact Hurwitz transformation for 2m = 4, 
to various potentials (see, for instance, [ 18-23, 571). When using such techniques, 
care must be exercised in the treatment of the time variable (see the paper [18] by 
Young and DeWitt-Morette). With a specific definition of the time variable, it should 
be also possible to use [63], in the framework of path integral methods, the other 
Hurwitz transformations introduced in this work. 

7.3.4. Hyperspherical harmonics. It has been shown in [ 171 how the K S  transformation 
allows us to construct R4 hyperspherical harmonics from Ut3 spherical harmonics. 
Indeed, such a construction is a consequence of the connection between Laplace 
operators associated to the chain O(3) c O(4) inherent to the compact Hurwitz transfor- 
mation for 2m = 4. Along the same line, the other Hurwitz transformations yield 
connections between Laplace and/or d’ Alembert operators which could be used to 
find relations between certain generalised hyperbolic harmonics. These matters are 
currently under study in relation to the Schwinger and Bargmann generating function 
methods [64]. 

7.3.5. Other pseudoHopf jibrations. Finally, we would like to mention, as a possible 
pending part of this work, the study of two pseudoHopf fibrations on hyperboloids 
(one with a compact fibre and another one with a non-compact fibre) that parallelise 
the Hopf fibration on spheres SI5+ SE of compact fibre S’. 
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Appendix 1. Clifford matrices for the Cayley-Dickson algebras A ( c , ,  c2, c3) 

It is a simple matter of matrix calculation to obtain from (40) the seven matrices 
r, , T 2 ,  . . . , r7 associated with the eight-dimensional Cayley-Dickson algebra 
A( cI , c2, c 3 ) .  These Clifford matrices can be written as: 

r ,  = E,?+ c ,Ezl  + clE4,+ Es6+ c ,E6 ,  - & a -  clE87 

Tz= El,+c2E3,  - E24-~2E42+ Es,+CzE75+E68+CZE86 

r, = E , ~ - c , c ~ E ~ ]  - c , E , S + C ~ E , ~ + E ~ ~ - C ~ C ~ E ~ , + C ~ E ~ ? - C ~ E ~ ~  

r4 = El ,  + c,E,, - E x -  ~ 3 E 6 z  - E37 - c3E73 - €48 - c3E84 

I's = El6- ClC3E6l- C, E?s+ ~3E52- E3g+ c,c,Ea, - cIE47+ ~3E74 

r6= E 1 7 - ~ 2 ~ 3 E 7 1 +  E z g -  czc3Ea2-czE35+~3E53+CzE46-~3E64 

r7 = E18+ c I c ~ c ~ E ~ ~  + c , E ~ , +  c , c , E ~ ~ -  cZE36- ClC,E63+ c,c,E~,+ c3E54 

where Eah stands for the matrix with the elements ( E a h ) a p  = 8(a ,  a ) S ( b ,  p ) .  Similarly, 
the three Clifford matrices TI, T2 and r3 for the four-dimensional algebra A( c1, c2) are 

r l  = El2+clEzl+E34+c1E43 

rr = E , ~  + c2 € 3 1  - 

r3= E , , - C , C , E ~ ,  - ~ , E ? , + C ~ E ~ ~  

r l =  E ~ ~ + C ~ E , ~ .  

- C 2  E , ~  

and the (sole) Clifford matrix rl  for the two-dimensional algebra A(c, )  is 

We now consider the three cases 2m = 2 ,  4 and 8 in a global way. For fixed 2m 
(=  2 ,  4 or 8), the matrices rk of order 2m span a Clifford algebra of degree 2 m  - 1. 
Such an algebra is either %(O, 2 m  - 1) or % ( m ,  m - 1). Following Deepak et al [50] 
we may associate to each of the latter two Clifford algebras a Dirac group of order 
2". For fixed 2m, the corresponding Dirac groups have 2 2 m - 1  + 2 conjugation classes. 
In addition, these groups have 22m-1 irreducible representations of dimension 1; and  
two irreducible representations of dimension 2 m - ' .  

After completion of this work, we were made aware of a paper by Deming Li er 
a1 [51]  on a general method of generating and classifying Clifford algebras. 

Appendix 2. Inverses of the Hunvitz transformations 

In order to further understand the fibrations described in Q 5 and to facilitate the use 
of the Hurwitz transformations in physical applications, we list (without proof) in this 
appendix the inverses of typical Hurwitz transformations in the two-, four- and  
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eight-dimensional cases. The method employed for deriving these inverse transforma- 
tions is an adaptation of the one developed by Kustaanheimo and  Stiefel [ 7 ]  in the 
four-dimensional compact case (see also [ 271). 

Case 2m = 8. Let us consider the right Hurwitz transformation x = 7&"( U), see (61). 
We want to find from (61) the reciprocal image ( u o ,  u l ,  U?, u3 ,  u 4 ,  u 5 ,  u 6 ,  U,) in R* 
of (xo, x4, x 5 ,  x6, x,) in R'. Equation (61) leads to 

U,= (x4uo-clxsul -c,x,u,+ c1c2x,u3)/(2p) 

(A2.1) 

U7 = ( X 7 u o  X g U i  - Xg U 2  - X4u3)/ ( 2 P )  

for p = U ~ - C ~ U ~ - C ~ U ~ + C ~ C , U ~ #  0. The quantity p is formally given in terms of the 
data xo,  x4, x 5 ,  x6 and x7 by 2p = x o *  N ( x ) ,  where we assume that (xo, x4, xs ,  x6, x,) 
satisfies the condition 

N(x) '=  X ~ - c 3 X ~ + C I C 3 X ~ + C ~ C 3 X ~ - c l C 2 C ~ X ~ > 0 .  

In the compact case c1 = c2 = c3 = -1, the reverse of x = YEg'(u) may be obtained 
from (A2.1) with 

c , = - 1  

u o = & c o s ~ c o s ~ c o s ~  

U, = J;; cos 4 sin x 

c,= -1 2p = X"+ ( x i +  x f +  x:+ x;+ x;)l 

U ,  = J;; cos 4 cos x sin q 

u3 = 4 sin 4 

where d, ,y and VI are real parameters exhibiting an  S3 fibre. 

obtained from (A2.1) with 
In the non-compact case c, = c2 = -c3 = -1, the reverse of x = X;)( U )  may be 

C ]  = -1 

xo> 0 u o = ~ c o s ~  cos/ycosV' 

U? = & cos 4 sin ,y u3 = 6 sin 4 

c,=-1 2p = xo* ( x i  - x i -  xi; - x i  - x;)l'2 

u1  = 6 cos 4 cos x sin V' 

where d, x and V' are real parameters exhibiting an  S3 fibre. 

from (A2.1) with 
In the non-compact case c1 = c2 = c3 = 1, the reverse of x = YE;'( U )  may be obtained 

Cl = 1 c,= 1 2p = xo* ( x i -  x:+ x;+ X I  - x;)I'2 

and 

u0 = 6 cos 4 cosh ,y 
u2 = 4 sin q sinh x 

u l  = 6 cos V' sinh x 
u3 = sin 4 cosh ,y 

] i f p > O  

or 

} i f p < O  
uo = 6 cos 9 sinh ,y 
u2 = 6 sin d cosh ,y 

U ,  = G COS 4 cosh x 
u3 = J-'p sin V' sinh x 
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where 4, ,y and V are real parameters exhibiting an  R'x S '  fibre. The five remaining 
choices for c, ( i  = 1,2 and 3) yield results similar to the ones for the non-compact case 
c ,  = C? = c3 = 1. 

Case 2m = 4.  We choose the right Hurwitz transformation x = 3$'( U), see (64). Let 
us look, from (64), for the reciprocal image (U,,, u I ,  U?, U?) in R4 of (xo, x, , x2) in R'. 
Equation (64) leads to 

U ,  = ( x l u o - ~ ? x ? ~ i ) / ( 2 P )  U? = (x,u,+ cIxIU3)/(2p) (A2.2) 

for p = U;+ c , c2uf  # 0. The quantity p is formally given in terms of the data x,,, x1 and 
x2 by 2p = xO+ N ( x ) ,  where we assume that (xo, x , ,  x,) satisfies the condition 

N ( x ) ~ = x ~ - c , x : - C 2 X ~ > 0 .  

I n  the compact case c1 = c2 = -1, the reverse of x = X f l (  U )  may be obtained from 
(A2.2) with 

C' = -1 c ,=-1  2p =x"+(x;+x:+x;)"* 

u , = ~ c o s  4 u 3 = G s i n  4 

where 4 is a real parameter exhibiting an  S' fibre. 

from (A2.2) with 
In the non-compact case c, = c2 = 1, the reverse of x = X f ' ( u )  may be obtained 

c, = 1 c2 = 1 2p =xo*(x;-xx:-xx:)"~ 

x,>o u , = ~ c o s  4 u3 = 4 sin 4 

where 4 is a real parameter exhibiting an  SI fibre. 

from (A2.2) with 
In the non-compact case c, = -c2 = -1, the reverse of x = X F ' ( u )  may be obtained 

c1 = -1 c2= 1 2p = x,f(x;+x;-x:)'" 

and 

U" = 6 cosh 4 U ?  = & sinh 4 i f p > O  

or 

U" = 6 sinh 4 u3 = 6 cosh 4 i f p < O  

where 4 is a real parameter exhibiting an  R fibre. The non-compact case c1 = -c2 = 1 
is very similar to the case c1 = -c? = -1. 

Case 2m = 2. The sole possibility is x = X G ' ( u )  = X ; ' ' ( u )  = %?"'(U), see (68). The 
reciprocal image (U", U,) in R2 of x,, in EX' or R is readily obtained from (68). In the 
compact case c, = -1, the reverse of x = Xk"( U )  is given by 

U" = Jr;; cos d u I  = Jr;; sin 4 for x 0 b  0 

where 4 is a real parameter exhibiting an  S' fibre. In the non-compact case c, = 1, 
the reverse of x = X;'( U )  is given by 

u1 = & sinh 4 uo = & cosh 4 for xo > 0 
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or 
uo = 6 sinh d U ,  = \T-x, cosh #J for xo<O 

where 4 is a real parameter exhibiting an R fibre. 
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